Library Element Article

A manifesto for reproducible science

👍
0
Uploaded by RRI Tools on 22 June 2017

A manifesto for reproducible science. Marcus R. Munafò, Brian A. Nosek, Dorothy V. M. Bishop, Katherine S. Button, Christopher D. Chambers, Nathalie Percie du Sert, Uri Simonsohn, Eric-Jan Wagenmakers, Jennifer J. Ware & John P. A. Ioannidis. Nature Human Behaviour 1, Article number: 0021 (2017)

Improving the reliability and efficiency of scientific research will increase the credibility of the published scientific literature and accelerate discovery. Here we argue for the adoption of measures to optimize key elements of the scientific process: methods, reporting and dissemination, reproducibility, evaluation and incentives. There is some evidence from both simulations and empirical studies supporting the likely effectiveness of these measures, but their broad adoption by researchers, institutions, funders and journals will require iterative evaluation and improvement. We discuss the goals of these measures, and how they can be implemented, in the hope that this will facilitate action toward improving the transparency, reproducibility and efficiency of scientific research.

What proportion of published research is likely to be false? Low sample size, small effect sizes, data dredging (also known as P-hacking), conflicts of interest, large numbers of scientists working competitively in silos without combining their efforts, and so on, may conspire to dramatically increase the probability that a published finding is incorrect1. The field of metascience — the scientific study of science itself — is flourishing and has generated substantial empirical evidence for the existence and prevalence of threats to efficiency in knowledge accumulation (refs 2,3,4,5,6,7; Fig. 1)

Open
English

Related Resources